WonATech
   
 

 

Support | Papers
Title A controlled surface geometry of polyaniline doped titania nanotubes biointerface for accelerating M
Name Admin
File

Abstract

In this work, titanium oxide nanotubes (TNTs) have been developed via electrochemical anodization process, followed by potentiostatic electropolymerization of aniline monomer to achieve TNTs coated polyaniline (PANI) substrate using cyclic voltammetry method at low temperature. Prior to PANI decoration, crystallinity of titanium oxide nanotubes (TNTs) was obtained by annealing the substrate at 420?°C for two hours. The physicochemical characterization of the as-prepared TNTs and TNTs/PANI were analyzed using FE-SEM, AFM, XRD and FT-IR techniques. A coating of PANI forms a sheath around the nanotubes and protects them from metallic corrosion. Large surface area to volume ratio of TNTs showed improved properties in biocompatibility, thermal stability, electrical conductivity, biomineralization and hydrophilicity after coating with PANI, an electroactive conducting polymer. In addition, the TNTs/PANI exhibited an effective platform to enhance attachment, development and proliferation of preosteoblast (MC3T3-E1) cells which opens a new avenue in the realm of bone tissue engineering. The cells’ morphology to their surrounding topography, development, or proliferation, and osteogenic-related markers (such as ALP increased level, collagen type I secretion) were also analysed. Such types of surface modification tailoring on titanium nanotubes could offer a potential and a promising scaffold material for biomedical implantation in bone tissue engineering.


208   A controlled surface geometry of polyaniline doped... Admin 2019.08.08 873
Pre 3D Patternable Supercapacitors from...
Next Indirect Nanoconstruction Morphology of...