## User-Defined Element in ZMAN ${ }^{\text {TM }}$

## How to add a new user-defined element?

Introduced by ZMAN 2.2, the "SIMPLE" category provides you with a functionality to easily make and edit your own circuit elements.
"BASIC" and "SIMPLE" categories are the sets of circuit elements. Each element is written in a form of analytical formula. Table 1 shows the elements of BASIC category. Its formula cannot be edited by a user. On the other hand, you can add and edit your own circuit elements under the category of SIMPLE. The other categories are for equivalent circuit models.
In this note, you can learn how to add a new user-defined element in SIMPLE category.

## Preparations

Let's think about the following model:


Figure 1. The model to be considered in this note is as shown here.

In the model shown in Figure 1, diffusion impedance element Z is defined as the following equation:

Whilst you will easily find Rs, Rct, and Q(Constant Phase Element) in the BASIC category, there is no such element describing the analytical function $Z$. Therefore, you need to make a new circuit element of your own as realizing eq. (1). First, you may symbolize $Z$ as an arbitrary but unused symbol; i.e. V.

Second, you must substitute suitable parameters for Rw, Tw, and Wp elements from eq (1):

$$
\begin{aligned}
& \mathrm{Vr}=\mathrm{Rw} \\
& \mathrm{Vt}=\mathrm{Tw} \\
& \mathrm{Vp}=\mathrm{Wp}
\end{aligned}
$$

It is due to the specific rule of naming parameters which is as the following in the box:

## Parameters for circuit Element

ZMAN accepts only the following parameters:

$$
\begin{aligned}
& A, A A, A B, A C, \ldots, A a, A b, A c, \ldots \\
& B, B A, B B, B C, \ldots, B a, B b, B c, \ldots \\
& \ldots \\
& Z, Z A, Z B, Z C, \ldots, Z a, Z b, Z c, \ldots
\end{aligned}
$$

- A parameter must consist of symbol and (or) an alphabetical character.
- A parameter name is case sensitive; i.e. AA and Aa are considered to be distinct parameters.

Then, the next step is to rephrase eq (1) into a formula acceptable in ZMAN, i.e. V equals to:
Vr * Coth(pow(Vt*s, Vp)) / pow(Vt*s, Vp)
where $s$ is $j \omega, \operatorname{Coth}(x)$ is the hyperbolic cotangent of $x$, and $\operatorname{pow}(x, y)$ is the $x$ raised to the power of $y$. Table 2 shows the list of functions you can use in formula.

Now, the model depicted in the Figure 1 can be described as the following expression.
Rs-(Rct-V)|Q

The rule for naming elements is as the following in the box.

## Elements in Model

Variables are distinguished by names. There are the following rules of naming variables:

- The first character should be a Symbol character(A to $Z$ ) and followed by alphabetical characters (capital and small letters), decimal digits, and underscore ( _ )
- A name is case sensitive; i.e. lowercase and uppercase letters are considered to be distinct characters
- There is no limit of name length; herewith all characters are significant

Now, let's start to register $V$ element to Model Editor.

## Make a new element in SIMPLE category

Complete the following steps to register a user-defined element in the model editor.

1. Launch ZMAN.
2. In the 'Getting Started' window, click the 'Model Editor'.

Note Use one of the following methods to access the Model Editor dialog box:

- Click the Model Editor link from the Getting Started Window after you launch ZMAN; or
- Select Tools >> Model Editor... from the menu bar of the ZMAN main window.

3. From the Category list, select SIMPLE. This displays its elements in the below list box.
4. Select Model $\gg$ New/Edit... to display "New/Edit Model in Simple Category" dialog.
5. From the Symbol list, select V. Disabled items means that they are used in BASIC category.
6. Type "Closed Warburg" in the Alias field. This is not necessary but for your convenience.
7. Type "Vr * Coth(pow(Vt*s, Vp)) / pow(Vt*s, Vp)" in the formula box. If the formula is acceptable, you can see green Validation checkmark and the OK button that is enabled.

8. Click the OK button to complete the steps. You can see V element is added in the Element list.

9. Click Parameters tab and type the suitable values in the "Default" column of the Parameter Table.

10. See the Nyquist and Bode Plot by clicking Evaluation tab.

Now we are ready to handle the model depicted in Figure 1.

## Add a new model in user category

Complete the following steps to make a user-defined model in the Model Editor.

1. From the Category list, select TEMPLATE. You can see its models in the below list. Select Model >> New... and the New Category / Model dialog is showed. If the TEMPLATE category is not existing, you can add it to the list by selecting Category >> New.... In this case, you can see the same dialog box.
2. Select "TEMPLATE" or type it in the Category box and "Rs-(Rct-V)|Q" in the Model box. The OK button should be enabled.

3. Click the OK button to come back to Model Editor. You may see the model is added in the Model Editor. To observe the behavior of the model, select Parameters tab and type suitable values in the table.

4. Check its Nyquist plot by clicking Evaluation tab. In order to have a close look, change frequency range from 0.1 Hz to 1 MHz and select Matching Scales in the right-click menu of the plot.


Table 1. Circuit elements defined in BASIC category are summarized.

| Symbol | Description | Parameters | Formula | Note |
| :---: | :---: | :---: | :---: | :---: |
| R | Resistive Element | R | R |  |
| c | Capacitive Element | c | $\frac{1}{\mathrm{sC}}$ | ${ }^{*}$ |
| L | Inductive Element | L | sL |  |
| w | Warburg Diffusion | w | $\frac{1}{W_{r}}$ |  |
| Q | Constant Phase Element | $\begin{aligned} & \mathrm{Qy} \\ & \mathrm{Qa} \end{aligned}$ | $\frac{1}{Q_{y}} \frac{1}{8 Q_{8}}$ |  |
| $\bigcirc$ | Nernst Impedance | $\begin{aligned} & \mathrm{Oy} \\ & \mathrm{Ob} \end{aligned}$ | $\frac{1}{O_{y} \sqrt{8}} \tanh \left(\varrho_{2} \sqrt{8}\right)$ |  |
| T | Finite Diffusion | $\begin{aligned} & \text { Ty } \\ & \mathrm{Tb} \end{aligned}$ | $\frac{1}{T_{y} \sqrt{8}} \operatorname{coth}\left(T_{\mathrm{b}} \sqrt{\mathrm{~s}}\right)$ |  |
| G | Homogeneous Reaction (Gerischer) | $\begin{aligned} & \text { Gy } \\ & \text { Gk } \end{aligned}$ | $\frac{1}{\varrho_{y^{k}} \sqrt{\varrho_{k}+s}}$ |  |
| s | Spherical Diffusion | $\begin{aligned} & \text { Sy } \\ & \text { Sk } \end{aligned}$ | $\frac{1}{g_{y}} \frac{1}{\sqrt{g_{k}} \\| \sqrt{2}}$ |  |
| x | Finite-Length diffusion at planar particles | $\begin{aligned} & \mathrm{Xr} \\ & \mathrm{Xc} \end{aligned}$ | $\sqrt{\frac{3 X_{p}}{\mathrm{X}_{\mathrm{g}} \mathrm{~s}}} \tanh \left(\sqrt{\left.3 \mathrm{X}_{\mathrm{p}} \mathrm{X}_{2} \mathrm{~s}\right)}\right.$ | *2 |
| Y | Finite-Length diffusion at spherical particles | $\begin{aligned} & \mathrm{Yr} \\ & \mathrm{Yc} \end{aligned}$ | $\frac{\tanh \left(\sqrt{8 Y_{p} Y_{2} s}\right)}{\sqrt{\frac{3 Y_{0} 8}{Y_{8}}}-\frac{1}{Y_{8}} \tanh \left(\sqrt{3 Y_{p} Y_{8} s}\right)}$ | *2 |
| z | Finite-Length diffusion at cylindrical particles | $\begin{aligned} & \mathrm{Zr} \\ & \mathrm{Zc} \end{aligned}$ | $\frac{\mathrm{I}_{0}\left(\sqrt{2 Z_{\mathrm{q}} Z_{\mathrm{q}} \mathrm{E}}\right)}{\sqrt{22 Z_{\mathrm{q}} Z_{\mathrm{c}} \mathrm{~g}} \cdot \mathrm{I}_{1}\left(\sqrt{2 Z_{\mathrm{p}} Z_{\mathrm{q}} \mathrm{~s}}\right)} Z_{\mathrm{n}}$ | *2, *3 |

${ }^{*} 1$. Complex argument, $s=j \omega$, where imaginary unit, j equals $\sqrt{-1}$ and $\omega$ is angular frequency.
*2. Impedance Spectroscopy: Theory, Experiment, and Applications, $2^{\text {nd }}$ edition, Ed. E. Barsoukov, and J. R. Macdonal, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2005
*3. $\mathrm{I}_{0}(\mathrm{x})$ and $\mathrm{I}_{1}(\mathrm{x})$ are modified Bessel-functions of the first kind, with 0 and 1 order correspondingly.

Table 2. List of functions.

| Constants |  |
| :---: | :---: |
| pi | Returns pi |
| Functions |  |
| abs(x) | computes the absolute value of $x$ |
| $\operatorname{acos}(x)$ | inverse cosine of $x$ |
| $\operatorname{acosh}(x)$ | inverse hyperbolic cosine of $x$ |
| $\operatorname{acot}(x)$ | inverse cotangent of $x$ |
| $\operatorname{acoth}(x)$ | inverse hyperbolic cotangent of $x$ |
| $\operatorname{asin}(x)$ | inverse sine of $x$ |
| $\operatorname{asinh}(x)$ | inverse hyperbolic sine of $x$ |
| $\operatorname{atan}(x)$ | inverse tangent of $x$ |
| $\operatorname{atan} 2(x, y)$ | inverse tangent of $x / y$ |
| $\operatorname{atanh}(x)$ | inverse hyperbolic tangent of $x$ |
| ceil(x) | computes the smallest integer greater than or equal to x |
| $\cos (\mathrm{x})$ | cosine of $x$ |
| $\cosh (x)$ | hyperbolic cosine of $x$ |
| $\cot (x)$ | cotangent of $x$ |
| $\operatorname{coth}(x)$ | hyperbolic cotangent of $x$ |
| Coth(x) | Coth $(x)$ is modified to avoid failure at limit condition of $x$ |
| $\csc (\mathrm{x})$ | cosecant of $x$ |
| $\operatorname{csch}(x)$ | hyperbolic cosecant of $x$ |
| deg(x) | converts radians to degrees ( ${ }^{*} 180 / \mathrm{p}$ ) |
| e(x) | returns e or the argument multiplied by e |
| erf(x) | Error function |
| $\operatorname{erfc}(x)$ | complementary Error function |
| $\exp (x)$ | e raised to the x power (exponential function) |
| factr(x) | Factorial of $x$ |
| floor(x) | computes the largest integer less than or equal to x |
| fract(x) | computes the fractional part of $x$ |
| gamma(x) | Gamma function |
| gammai $(a, x)$ | Incomplete Gamma function |
| getexp(x) | computes the exponent of a floating-point value |
| getman(x) | computes the mantissa of a floating-point value |
| int(x) | computes the integer part of $x$ |
| $\operatorname{Idexp}(\mathrm{m}, \mathrm{e})$ | computes a floating-point number from mantissa and exponent |
| $\ln (\mathrm{x})$ | natural logarithm of $x$ (logarithm to the base e) |
| $\log (x, y)$ | logarithm of $y$ to the base $x$ |
| $\log 10(x)$ | logarithm of $x$ to the base 10 |
| $\log 2(x)$ | logarithm of $x$ to the base 2 |
| pi(x) | returns pi or the argument multiplied by pi |
| pow( $x, y$ ) | $x$ raised to the y power |
| pow10(x) | 10 raised to the x power |
| pow2(x) | 2 raised to the x power |


| $\operatorname{rad}(\mathrm{x})$ | converts degrees to radians ( $\mathrm{x}^{*} \mathrm{p} / 180$ ) |
| :---: | :---: |
| random( $\mathrm{x}, \mathrm{y}$ ) | generates random numbers within the specified range |
| $\boldsymbol{\operatorname { s e c }}(\mathrm{x})$ | secant of $x$ |
| $\operatorname{sech}(x)$ | hyperbolic secant of $x$ |
| $\operatorname{sign}(x)$ | returns the sign of $x$ |
| $\sin (x)$ | sine of $x$ |
| $\boldsymbol{\operatorname { s i n c }}(\mathrm{x})$ | $\sin (x) / x$ |
| $\sinh (x)$ | hyperbolic sine of $x$ |
| spike(x) | Spike function |
| sqrt(x) | computes the square root of $x$ |
| square(x) | square function |
| step(x) | step function |
| $\boldsymbol{\operatorname { t a n }}(\mathrm{x})$ | tangent of $x$ |
| $\tanh (x)$ | hyperbolic tangent of $x$ |
| Tanh(x) | $\operatorname{Tanh}(\mathrm{x})$ is modified to avoid failure at limit condition of x |
| Special Functions |  |
| BesselJ( $n, x$ ) | Bessel function of the first kind, denoted as $J_{n}(x)$ |
| $\operatorname{BesselY}(\mathrm{n}, \mathrm{x})$ | Bessel function of the second kind, denoted as $Y_{n}(x)$ |
| BesselI( $n, x$ ) | modified Bessel function of the first kind, denoted as $\mathrm{I}_{n}(x)$ |
| $\operatorname{BesselK}(\mathrm{n}, \mathrm{x})$ | modified Bessel function of the second kind, denoted as $\mathrm{K}_{\mathrm{n}}(\mathrm{x})$ |

